125 research outputs found

    Virtual hybrid simulation of beams with web openings in fire

    Get PDF
    Purpose: Perforated composite beams are an increasingly popular choice in the construction of buildings because they can provide a structurally and materially efficient design solution while also facilitating the passage of services. The purpose of this paper is to examine the behaviour of restrained perforated beams, which act compositely with a profiled slab and are exposed to fire. The effect of surrounding structure on the composite perforated beam is incorporated in this study using a virtual hybrid simulation framework. The developed framework could also be used to analyse other structural components in fire. Design/methodology/approach: A finite element model is developed using OpenSees and OpenFresco using a virtual hybrid simulation technique, and the accuracy of the model is validated using available fire test data. The validated model is used to investigate some of the most salient parameters such as the degree of axial and rotational restraint, arrangement of the openings and different types of fire on the overall fire behaviour of composite perforated beams. Findings: It is shown that both axial and rotational restraint have a considerable effect on time-displacement behaviour and the fire performance of the composite perforated beam. It is observed that the rate of heating and the consequent development of elevated temperature in the section have a significant effect on the fire behaviour of composite perforated beams. Originality/value: The paper will improve the knowledge of readers about modelling the whole system behaviour in structural fire engineering and the presented approach could also be used for analysing different types of structural components in fire conditions

    Fire behaviour of concrete filled elliptical steel columns

    Get PDF
    In this work, a non-linear three-dimensional finite element model is presented in order to study the behaviour of axially loaded concrete filled elliptical hollow section (CFEHS) columns exposed to fire. This study builds on previous work carried out by the authors on concrete filled circular hollow section (CFCHS) columns both at room temperature and in fire. The numerical model is first validated at room temperature against a series of experiments on CFEHS stub columns available in the literature and subsequently extended to study the performance of slender columns at elevated temperatures. The aim of this work is to understand and represent the behaviour of axially loaded CFEHS columns in fire situations and to compare their effectiveness with that of the circular concrete filled tubular (CFT) columns. Parametric studies to explore the influence of variation in global member slenderness, load level, cross-section slenderness and section size are presented. Finally, guidance on the fire design of CFEHS columns is proposed: it is recommended to follow the guidelines of Clause 4.3.5.1 in EN 1994-1-2, but employing the flexural stiffness reduction coefficients established in the French National Annex with an equivalent EHS diameter equal to P/¿, where P is the perimeter of the ellipse.The authors would also like to acknowledge Universidad Politecnica de Valencia for providing fellowship funding for the first author's stay as a visiting academic at Imperial College London.Espinós Capilla, A.; Gardner, L.; Romero, ML.; Hospitaler Pérez, A. (2011). Fire behaviour of concrete filled elliptical steel columns. Thin-Walled Structures. 49(2):239-255. https://doi.org/10.1016/j.tws.2010.10.008S23925549

    Numerical modelling of composite floor slabs subject to large defections

    Get PDF
    This paper is concernedwith the ultimate behaviour of composite floor slabs. Steel/concrete composite structures are increasingly common in the UK and worldwide, particularly for multi-storey construction. The popularity of this construction formis mainly due to the excellent efficiency offered in terms of structural behaviour, construction time and material usage all of which are particularly attractive given the ever-increasing demands for improved sustainability in construction. In this context, the engineering research community has focused considerable effort in recent years towards understanding the response of composite structures during extreme events, such as fires. In particular, the contribution made by the floor slab system is of crucial importance as its ability to undergo secondary load-carrying mechanisms (e.g. membrane action) once conventional strength limits have been reached may prevent overall collapse of the structure. Researchers have focused on developing the fundamental understanding of the complex behaviour of floor slabs and also improving themethods of analysis. Building on thiswork, the current paper describes the development and validation of a finite element model which can simulate the response of floor slab systems until failure, both at ambient and elevated temperature. The model can represent the complexities of the behaviour including the temperature-dependent material and geometric nonlinearities. It is first developed at ambient temperature and validated using a series of experiments on isolated slab elements. The most salient parameters are identified and studied. Thereafter, the model is extended to include the effects of elevated temperature so it can be employed to investigate the behaviour under these conditions. Comparisons with current design procedures are assessed and discussed

    Fire design method for concrete filled tubular columns based on equivalent concrete core cross-section

    Get PDF
    In this work, a method for a realistic cross-sectional temperature prediction and a simplified fire design method for circular concrete filled tubular columns under axial load are presented. The generalized lack of simple proposals for computing the cross-sectional temperature field of CFT columns when their fire resistance is evaluated is evident. Even Eurocode 4 Part 1-2, which provides one of the most used fire design methods for composite columns, does not give any indications to the designers for computing the cross-sectional temperatures. Given the clear necessity of having an available method for that purpose, in this paper a set of equations for computing the temperature distribution of circular CFT columns filled with normal strength concrete is provided. First, a finite differences thermal model is presented and satisfactorily validated against experimental results for any type of concrete infill. This model consideres the gap at steel-concrete interface, the moisture content in concrete and the temperature dependent properties of both materials. Using this model, a thermal parametric analysis is executed and from the corresponding statistical analysis of the data generated, the practical expressions are derived. The second part of the paper deals with the development of a fire design method for axially loaded CFT columns based on the general rules stablished in EN 1994-1-1 and employing the concept of room temperature equivalent concrete core cross-section. In order to propose simple equations, a multiple nonlinear regression analysis is made with the numerical results generated through a thermo-mechanical parametric analysis. Once more, predicted results are compared to experimental values giving a reasonable accuracy and slightly safe results.The authors would like to express their sincere gratitude to the Spanish Ministry of Economy and Competitivity for the help provided through the project BIA2012-33144, and to the European Community for the FEDER funds.Ibáñez Usach, C.; Aguado, JV.; Romero, ML.; Espinós Capilla, A.; Hospitaler Pérez, A. (2015). Fire design method for concrete filled tubular columns based on equivalent concrete core cross-section. Fire Safety Journal. 78:10-23. https://doi.org/10.1016/j.firesaf.2015.07.009S10237

    Effects of fire-fighting on a fully developed compartment fire: temperatures and emissions

    Get PDF
    This study evaluates the effects and consequences of fire-fighting operations on the main characteristics of a fully-developed compartment fire. It also presents data and evaluation of the conditions to which fire-fighters are exposed. A typical room enclosure was used with ventilation through a corridor to the front access door. The fire load was wooden pallets. Flashover was reached and the fire became fully developed before the involvement of the fire-fighting team. The progression of the fire-fighters through the corridor and the main-room suppression attack - in particular the effect of short, medium and long water pulses on either the hot gas layer or the fire seat - was charted against the compartment temperatures, heat release rates, oxygen levels and toxic species concentrations. The fire fighting team was exposed to extreme conditions, heat fluxes in excess of 35 kW/m2 and temperatures of the order of 250 oC even at crouching level. The fire equivalence ratio showed rich burning with high toxic emissions in particular of CO and unburnt hydrocarbons very early in the fire history and a stabilisation of the equivalence ratio at about 1.8. The fire fighting operations made the combustion temporarily richer and the emissions even higher

    Protection of buried rigid pipes using geogrid-reinforced soil systems subjected to cyclic loading

    Get PDF
    YesThe performance of buried rigid pipes underneath geogrid-reinforced soil while applying incrementally increased cyclic loading was assessed using a fully instrumented laboratory rig. The influence of varying two parameters of practical importance was investigated; the pipe burial depth and the number of geogrid-layers. Measurements were taken for pipe deformation, footing settlement, strain in pipe and reinforcing layers, and pressure/soil stress on the pipe crown during various stages of cyclic loading. The research outcomes demonstrated a rapid increase in the rate of deformation of the pipe and the footing, and the rate of generated strain in the pipe and the geogrid-layers during the first 300 cycles. While applying further cycles, those rates were significantly decreased. Increasing the pipe burial depth and number of geogrid-layers resulted in reductions in the footing and the pipe deformations, the pressure on pipe crown, and the pipe strains. Redistribution of stresses, due to the inclusion of reinforcing layers, formed a confined zone surrounding the pipe providing it with additional lateral support. The pipe invert experienced a rebound, which was found to be dependent on pressure around the pipe and the degree of densification of the bedding layer. Data for strains measured in the geogrid-layers showed that despite the applied loading value and the pipe burial depth, the tensile strain in the lower geogrid-layer was usually higher than that measured in the upper layer

    Risk‐informed requirements for design and assessment of structures under temporary use

    No full text
    The relatively high failure rates, with important consequences in many cases, suggest that the implicitly acceptable risk levels corresponding to temporary civil engineering structures and activities might exceed the bounds of normally acceptable levels associated with different societal activities. Among other reasons, this may be attributed to the lack of a rational approach for the assessment of risks associated with the different technologies supporting these activities in general, and for structures in particular. There is a need for establishing appropriate target reliability levels for structures under temporary use taking into account specific circumstances such as reduced risk exposure times. This issue is being addressed in this article. Acceptance criteria for building‐structure‐related risks to persons obtained in prior studies are adapted to the special circumstances of nonpermanent risk exposure. Thereby, the general principle followed is to maintain the same risk levels per time unit as for permanently occupied buildings. The adaptation is based on the statistical annual fatality rate, a life safety risk metric that allows for a consistent comparison of risks across different societal activities and technologies. It is shown that the target reliability indices taking account of the temporary use of buildings might be significantly higher than the values suggested for permanently used structures.Peer reviewe
    corecore